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Understanding how host load changes over time is instrumental in
predicting the execution time of tasks or jobs, such as in dynamic load
balancing and distributed soft real-time systems. To improve this
understanding, we collected week-long, 1 Hz resolution traces of the
Digital Unix 5 second exponential load average on over 35 different
machines including production and research cluster machines, compute
servers, and desktop workstations. Separate sets of traces were
collected at two different times of the year. The traces capture all of the
dynamic load information available to user-level programs on these
machines. We present a detailed statistical analysis of these traces here,
including summary statistics, distributions, and time series analysis
results. Two significant new results are that load is self-similar and that it
displays epochal behavior. All of the traces exhibit a high degree of
self-similarity with Hurst parameters ranging from 0.73 to 0.99, strongly
biased toward the top of that range. The traces also display epochal
behavior in that the local frequency content of the load signal remains
quite stable for long periods of time (150-450 seconds mean) and
changes abruptly at epoch boundaries. Despite these complex
behaviors, we have found that relatively simple linear models are
sufficient for short-range host load prediction.
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Abstract

Understanding how host load changes over time is instrumental in predicting the execution time of
tasks or jobs, such as in dynamic load balancing and distributed soft real-time systems. To improve
this understanding, we collected week-long, 1 Hz resolution traces of the Digital Unix 5 second
exponential load average on over 35 different machines including production and research cluster
machines, compute servers, and desktop workstations. Separate sets of traces were collected at two
different times of the year. The traces capture all of the dynamic load information available to user-
level programs on these machines. We present a detailed statistical analysis of these traces here,
including summary statistics, distributions, and time series analysis results. Two significant new
results are that load is self-similar and that it displays epochal behavior. All of the traces exhibit
a high degree of self-similarity with Hurst parameters ranging from 0.73 to 0.99, strongly biased
toward the top of that range. The traces also display epochal behavior in that the local frequency
content of the load signal remains quite stable for long periods of time (150-450 seconds mean)
and changes abruptly at epoch boundaries. Despite these complex behaviors, we have found that
relatively simple linear models are sufficient for short-range host load prediction.




1 Introduction

The distributed computing environments to which most users have access consist of a collection
of loosely interconnected hosts running vendor operating systems. Tasks are initiated indepen-
dently by users and are scheduled locally by a vendor supplied operating system; there is no global
scheduler that controls access to the hosts. As users run their jobs the computational load on the
individual hosts changes over time.

Deciding how to map computations to hosts in systems with such dynamically changing loads
(what we will call the mapping problem) is a basic problem that arises in a number of important
contexts, such as dynamically load-balancing the tasks in a parallel program [24, 1, 26], and
scheduling tasks to meet deadlines in a distributed soft real-time system [15, 22, 23, 17].

Host load has a significant effect on running time. Indeed, the running time of a compute bound
task is directly related to the average load it encounters during execution. Determining a good map-
ping of a task requires a prediction, either implicit or explicit, of the load on the prospective remote
hosts to which the task could be mapped. Making such predictions demands an understanding of
the qualitative and quantitative properties of load on real systems. If the tasks to be mapped are
short, this understanding of load should extend to correspondingly fine resolutions. Unfortunately,
to date there has been little work on characterizing the properties of load at fine resolutions. The
available studies concentrate on understanding functions of load, such as availability [21] or job
durations [8, 18, 11]. Furthermore, they deal with the coarse grain behavior of load — how it
changes over minutes, hours and days.

This paper is a first step to a better understanding the properties of load on real systems at
fine resolutions. We collected week-long, 1 Hz resolution traces of the Digital Unix load average
(specifically, an exponential average with a five second time constant) on over 35 different ma-
chines that we classify as production and research cluster machines, compute servers, or desktop
workstations. We collected two sets of such traces at different times of the year. The 1 Hz sample
rate is sufficient to capture all of the dynamic load information that is available to user-level pro-
grams running on these machines. In this paper, we present a detailed statistical analysis of both
sets of traces and contemplate the implications of the properties we find for the mapping problem.
An earlier version of this paper [6], concentrated on the first set of traces.

The basic question is whether load traces that might seem at first glance to be random and
unpredictable might have structure that could be exploited by a mapping algorithm. Our results
suggest that load traces do indeed have some structure in the form of clearly identifiable proper-
ties. In essence, our results characterize how load varies, which should be of interest not only to
developers of mapping and prediction algorithms, but also to those who need to generate realistic
synthetic loads in simulators or to those doing analytic work. Here is a summary of our results and
their implications:

(1) The traces exhibit low means but very high standard deviations and maximums. Relatively
few of the traces had mean loads of 1.0 or more. The standard deviation is typically at least as
large as the mean, while the maximums can be as much as two orders of magnitude larger. The
implication is that these machines have plenty of cycles to spare to execute jobs, but the execution
time of these jobs will vary drastically.

(2) Standard deviation and maximum, which are absolute measures of variation, are positively
correlated with the mean, so a machine with a high mean load will also tend to have a large standard
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deviation and maximum. However, these measures do not grow as quickly as the mean, so their
corresponding relative measures actually shrink as the mean increases. The implication is that if
the mapping problem assumes a relative metric, it may not be unreasonable to use the host with
higher mean load.

(3) The traces have complex, rough, and often multi-modal distributions that are not well fitted
by analytic distributions such as the normal or exponential distributions. Even for the traces which
exhibit unimodally distributed load, the normal distribution’s tail is too short while the exponen-
tial distribution’s tail is too long. The implication is that modeling and simulation that assumes
convenient analytical load distributions may be flawed. :

- (4) Time series analysis of the traces shows that load is strongly correlated over time. The au-
tocorrelation function typically decays very slowly while the periodogram shows a broad, almost
noise-like combination of all frequency components. An important implication is that history-
based load prediction schemes seem very feasible. However, the complex frequency domain be-
havior suggests that linear modeling schemes may have difficulty. From a modeling point of view,
itis clearly important that these dependencies between successive load measurements are captured.

(5) The traces are self-similar. Their Hurst parameters range from 0.73 to 0.99, with a strong
bias toward the top of that range. This tells us that load varies in complex ways on all time scales
and is long term dependent. This has several important implications. First, smoothing load by
averaging over an interval results in much smaller decreases in variance than if load were not long
range dependent. Variance decays with increasing interval length m and Hurst parameter H as
m?H =2, This is m =1 for signals without long range dependence and m =4 to m =2 for the range
of H we measured. This suggests that task migration in the face of adverse load conditions may
be preferable to waiting for the adversity to be ameliorated over the long term. The self-similarity
result also suggests certain modeling approaches, such as fractional ARIMA models [12, 10, 3]
which can capture this property.

(6) The traces display epochal behavior. The local frequency content of the load signal re-
mains quite stable for long periods of time (150-450 seconds mean) and changes abruptly at the
boundaries of such epochs. This suggests that the problem of predicting load may be able to be
decomposed into a sequence of smaller subproblems.

After completing this study, we evaluated linear models for predicting host load using the
traces, finding that relatively simple autoregressive models are sufficient for short range host load
prediction [7].

2 Measurement methodology

The load on a Unix system at any given instant is the number of processes that are running or
are ready to run, which is the length of the ready queue maintained by the scheduler. The kernel
samples the length of the the ready queue at some rate and exponentially averages some number
of previous samples to produce a load average which can be accessed from a user program. The
specific Unix system we used was Digital Unix (DUX). A

Unlike many Unix implementations, which exponentially average with a time constant of one
minute at the finest, DUX uses a time constant of five seconds. This small time constant allows
us to capture considerably more of the dynamics of load than would have been possible on other
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Unix implementations, and it minimizes the effect of phantom correlations due to the exponential
filter. Interestingly, directly sampling the length of the ready queue, which we tried on Windows
NT, does not provide much useful information because it is impossible to sample the queue fast
enough from a user process.

We developed a small tool to sample the DUX load average at one second intervals and log the
resulting time series to a data file. The 1 Hz sample rate was arrived at by subjecting DUX systems
to varying loads and sampling at progressively higher rates to determine the rate at which DUX
actually updated the value. DUX updates the value at a rate of 1/2 Hz, thus we chose a 1 Hz sample
rate by the Nyquist criterion. This choice of sample rate means we capture all of the dynamic load
information the operating system makes available to user programs. We ran this trace collection
tool on 39 hosts belonging to the Computing, Media, and Communication Laboratory (CMCL) at
CMU and the Pittsburgh Supercomputing Center (PSC) for slightly more than one week in late
August, 1997. A second set of week-long traces was acquired on almost exactly the same set of
machines (35 machines total) in late February and early March, 1998. The results of the statistical
analysis were similar for the two sets of traces.

All of the hosts in the August, 1997 set were DEC Alpha DUX machines, running either DUX
3.2 or 4.0 and they form four classes:

e Production Cluster: 13 hosts of the PSC’s “Supercluster”, including two front-end machines
(axpfea, axpfeb), four interactive machines (axpO through axp3), and seven batch machines
scheduled by a DQS [16] variant (axp4 through axp10.)

e Research Cluster: eight machines in an experimental cluster in the CMCL
(manchester-1 through manchester-8.)

e Compute servers: two high performance large memory machines used by the CMCL group
as compute servers for simulations and the like (mojave and sahara.)

e Desktops: 16 desktop workstations owned by members of the CMCL (aphrodlte through
Zeno.)

The same hosts were used for the March, 1998 traces, with the following exceptions:
o Production Cluster: axp9 was réplaced by axpl1 due to hardware failures.

e Desktops: argus, asclepius, bruce, cobain, darryl, and hestia were replaced by belushi and
loman due to hardware upgrades.

Figures 1 and 2 provide additional details of the individual August, 1997 and March, 1998
traces. The author will be happy to provide the traces to any interested readers.
3 Statistical analysis
We analyzed the individual load traces using summary statistics, histograms, fitting of analytic

distributions, and time series analysis. The picture that emerges is that load varies over a wide
range in very complex ways. Load distributions are rough and frequently multi-modal. Even
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| Hostname Start Time - Days Samples |
Production Cluster
axp0.psc Tue Aug 12 21:29:12 EDT 1997 15.00 1296000
axpl.psc Tue Aug 12 21:30:09 EDT 1997 14.00 1209600
axp2.psc Tue Aug 12 21:30:53 EDT 1997 14.00 1209600
axp3.psc Tue Aug 12 21:31:13EDT 1997 14.00 1209600
axp4.psc Tue Aug 12 21:31:12EDT 1997 14.00 1209600
axp5.psc Tue Aug 12 21:31:47EDT 1997 14.00 1209600
axp6.psc Tue Aug 12 21:31:15EDT 1997 15.00 1296000
axp7.psc Tue Aug 12 20:51:19 EDT 1997 13.00 1123200
axp8.psc Tue Aug 12 21:31:19 EDT 1997 14.00 1209600
axp9.psc Tue Aug 12 21:31:45EDT 1997 14.00 1209600
axp10.psc Tue Aug 12 21:31:21 EDT 1997 14.00 1209600
axpfea.psc Sat Aug 16 14:44:29 EDT 1997 13.00 1123200
axpfeb.psc Sat Aug 16 14:44:55EDT 1997 12.00 1036800
, Research Cluster
manchester-1.cmcl  Sun Aug 17 19:41:10EDT 1997 3.92 338400
manchester-2.cmcl  Sun Aug 17 19:41:09EDT 1997 4.00 345600
manchester-3.cmcl  Sun Aug 17 19:41:13EDT 1997 396 342000
manchester-4.cmcl  Sun Aug 17 19:41:10EDT 1997 4.00 345600
manchester-5.cmcl  Sun Aug 17 19:41:09 EDT 1997 4.04 349200
manchester-6.cmcl  Sun Aug 17 19:41:09EDT 1997 4.08 352800
manchester-7.cmcl  Sun Aug 17 19:41:10EDT 1997 4.00 345600
manchester-8.cmcl  Sun Aug 17 19:41:10EDT 1997 4.00 345600
Compute Servers
mojave.cmcl Sun Aug 17 19:41:11EDT 1997 4.04 349200
sahara.cmcl Sun Aug 17 19:41:11 EDT 1997 4.00 345600
Desktops
aphrodite.nectar Sun Aug 17 19:41:12EDT 1997 4.00 345600
argus.nectar Sun Aug 17 19:41:17EDT 1997 4.04 349200
asbury-park.nectar Sun Aug 17 19:41:11 EDT 1997 4.00 345600
asclepius.nectar Sun Aug 17 19:41:07EDT 1997 4.08 352800
bruce.nectar Sun Aug 17 19:41:10EDT 1997 3.92 338400
cobain.nectar Sun Aug 17 19:41:12EDT 1997 4.04 349200
darryl.nectar Sun Aug 17 19:41:32EDT 1997 1.71 147600
hawaii.cmcl Sun Aug 17 19:41:11 EDT 1997  2.63 226800
hestia.nectar Sun Aug 17 19:41:12EDT 1997 4.00 345600
newark.cmcl Sun Aug 17 19:41:13EDT 1997 4.00 345600
pryor.nectar Sun Aug 17 19:41:13EDT 1997 1.71 147600
rhea.nectar Sun Aug 17 19:41:11 EDT 1997 4.00 345600
rubix.mc Sun Aug 17 19:41:13EDT 1997 4.00 345600
themis.nectar Sun Aug 17 19:41:09EDT 1997 4.00 345600
uranus.nectar Sun Aug 17 19:41:13EDT 1997 4.00 345600
Zeno.nectar Sun Aug 17 19:41:13EDT 1997 4.08 352800

Figure 1: Details of the August, 1997 traces.



| Hostname Start Time Days Samples |
Production Cluster
axp0.psc Wed Feb 25 17:34:26 EST 1998 12.08 1043400
axpl.psc Wed Feb 25 17:34:25 EST 1998 12.08 1043400
axp2.psc Wed Feb 25 17:34:25 EST 1998 12.08 1043400
axp3.psc Wed Feb 25 17:34:26 EST 1998 12.03 1039400
axp4.psc Wed Feb 25 17:34:27 EST 1998 12.06 1041900
axp5.psc Wed Feb 25 17:34:27 EST 1998  12.03 1039700
axp6.psc Wed Feb 25 17:34:27 EST 1998  12.08 1043400
axp7.psc Wed Feb 25 17:34:27 EST 1998 12.01 1037700
axp8.psc Wed Feb 25 17:34:28 EST 1998 12.06 1041800
axpl10.psc Wed Feb 25 17:34:28 EST 1998 12.03 1039700
axpll.psc Wed Feb 25 17:16:20 EST 1998 12.03 1039800
axpfea.psc Wed Feb 25 17:18:01 EST 1998 12.08 1043800
axpfeb.psc Wed Feb 25 17:23:34 EST 1998  12.0 1043400
. ‘Research Cluster
manchester-1.cmcl Wed Feb 25 20:42:30 EST 1998 836 721900
manchester-2.cmcl  'Wed Feb 25 20:42:23 EST 1998  8.36 721900
manchester-3.cmcl  Wed Feb 25 20:42:23 EST 1998 836 721900
manchester-4.cmcl  Wed Feb 25 20:42:29 EST 1998  8.35° 721300
manchester-5.cmcl ' Wed Feb 25 20:42:27 EST 1998 836 721900
manchester-6.cmcl  Wed Feb 25 20:42:30 EST 1998 8.36 721900
manchester-7.cmcl Wed Feb 25 20:42:24 EST 1998 835 721800
manchester-8.cmcl Wed Feb 25 20:42:26 EST 1998 835 721800
Compute Servers
mojave.cmcl Wed Feb 25 20:42:31 EST 1998  5.31 458800
sahara.cmcl Wed Feb 25 20:42:34 EST 1998  8.34 721300
Desktops
aphrodite Wed Feb 25 20:42:17 EST 1998  8.36 722000
asbury-park Wed Feb 25 20:42:23 EST 1998 590 509400
belushi Wed Feb 25 20:42:28 EST 1998  7.77 671400
hawaii Wed Feb 25 20:42:18 EST 1998  8.36 722000
loman Wed Feb 25 20:42:34 EST 1998  8.36 721900
newark.cmcl Wed Feb 25 20:42:29 EST 1998 836 722200
pryor.nectar Wed Feb 25 20:42:24 EST 1998  8.36 722100
rhea.nectar Wed Feb 25 21:12:17 EST 1998 10.19 880600
rubix.mc Wed Feb 25 20:42:24 EST 1998  1.81 156400
themis.nectar Wed Feb 25 20:42:29 EST 1998 494 426900
uranus.nectar Wed Feb 25 20:42:33 EST 1998  8.36 722000
zeno.nectar Wed Feb 25 20:42:26 EST 1998  6.23 537900

Figure 2: Details of the March, 1998 traces.
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Figure 3: Correlation coefficients (CCs) between all of the discussed statistical properties.

traces with unimodal histograms are not well fitted by common analytic distributions, which have
tails that are either too short or too long. Time series analysis shows that load is strongly correlated
over time, but also has complex, almost noise-like frequency domain behavior.

We summarized each of our load traces in terms of our statistical measures and computed their
correlations to determine how the measures are related. Figure 3(a) contains the correlations for
the August, 1997 set while Figure 3(b) contains the correlations for the March, 1998 set. Unless
otherwise noted, the remaining figures in the paper similarly present independent results for the
two sets of traces. Each cell of the tables in Figure 3 is the correlation coefficient (CC) between the
row measure and the column measure, computed over the the load traces in the set. We will refer
back to the highlighted cells (where the absolute correlations are greater than 0.3) throughout the
paper. It is important to note that these cross correlations can serve as a basis for clustering load
traces into rough equivalence classes.

Summary statistics:

Summarizing each load trace in terms of its mean, standard deviation, and maximum and minimum
illustrates the extent to which load varies. Figure 4 shows the mean load and the +/- one standard
deviation points for each of the traces. As we might expect, the mean load on desktop machines is
significantly lower than on other machines. However, we can also see a lack of uniformity within
each class, despite the long duration of the traces. This is most clear among the Production Cluster
machines, where fewer than half of the machines seem to be doing most of the work. This lack
of uniformity even over long time scales shows clear opportunity for load balancing or resource
management systems.

From Figure 4 we can also see that desktop machines have smaller standard deviations than the

6




Desktops

+SDev

}

ousz
Fsnuesn

I siway)
Fxigra

[eaw

[10A:d

[ suemau

I uewoy

[ emey
[lysnjaq

[ ed-Aingse
sipoiyde

$19A198 adwo)

BIBYES
anelow

Research
Cluster

g-io|sayouRL
[ 2-1e1s8yoURW
[ 9-1e1sayouews
[ g-ieiseyouew
p-1epsayouew T AN
g-oisoypuews o
Z-oisapuew =

1 youew

r
y

Production Cl

|

¥

Y
A

|

qejdxe
eajdxe
J1dxe
Oldxe
gdxe
Ldxe

[ gdxe

[ gdxe

I pdxe

[ gdxe

| Zdxe

I Ldxe

| odxe

1.6

1.44
1.24
1

<

]

Desktops
} +SDev

Mean
-8Dev

ouaz
[ snuein

[ siwaip

[ xiqru

[ eays

[1ond

[ jiemau

[ ensay

[ nemey

[ iAuep

I ureqoo
=

[ Snig9jose

[ yec-Angse

s1oneg andwo)

Research
Cluster

g-19)59UoUBW
[ -1a)satpuew

g~ ~
G-Ja1soUoURW o)
N

....‘.Uam&mar-ﬂrc

A
A

Y
r

Production Cluster

REU SRS

0.2

4
.4

Mean load +/- one standard deviation: (a) August, 1997 traces, (b) March, 1998 traces.

.
.

Figure 4

peo uespy
o ©
T .9 . °

Ve

14
1.2
.4

0.
ro.2
14

}Hnnnnﬂ_nnﬂﬂ

T

sianeg aindwoy
.

Research
Cluster

*
.
.

Production Cluster
-

T T T T
0 a 6 4
1

PeOT Jo (UBSW/ASPS) AOD

j 180nfnenaAflnnnoneafin

peoT| ueapyy
v o @ ©
- T

2 N
- © 68 ©6 © o

SIONISG 3)ndwo)

'm

ouaz
snuesin
sisyy
x1qn
eay
Johid
HEMAU
uewo}
nemey
snjaq

siByES
aABiows

[ yied-Angse
[ syposyde

8-1A)SIYOUBW

gaydxe
esdxe
L10xe
oldxe
gaxe
Jdxe
gaxe
Gaxe
paxe
gdxe
zdxe
Laxe
odxe

snole

[ 2-19)s3yduBUl
[ g-sais8 oUW
[ g-Jaisayousw
" paoisoyouew T N\
I g-19153ouew
I 2-19)s0ouBW
[ 1-19)sayduBw

[ sninapse
[ uea-Aingse

ayposyde

eJeyes
oABIOW

Research

Cluster

[ 2-18is8Y

uBW
puEw 8
uew T

uew

Cluster
.
i}

T T T T T T T

2
2

" peon o (uwsuyneps) AOD

) © @ < & )

ew
uew

L-Jolsay
qajoxe
eajaxe
oLaxe
6axe
gaxe
axe
axe
axe
paxe
caxe
zaxe

axe
oaxe

puew

~~

ol

<
A

(a) August, 1997 traces, (b) March, 1998 traces.

COV of load and mean load

Figure 5




jp—LEmductionCluster | Research 12— Production Cluster Research Desktops

Cluster ® Max Ciuster P Max
o
g :

101 @ Mean 10 < Mean

3 H
o a
A E . g

8 8 Min 8 o Min

- M——at

eb
1
2
3
4
5
6
7
8

oa M———d
Il—-—-«
moiave ¥ *————4

&
el
e
el
stel
e
e
]

I manches!

........

e
KK U UGN TN

belushi —
hawaii ——
loman ¥t
newark #———d
themis #——¢
uranus fe—————«
zeno p———

thea ]

pryor ————d
rubix M-

saha

aphrodite ——————<

asclepius ¥4
asbury-park ————¢

hes!

Tubix —d
themis #-#-———u
uranug #——4

zeno—+

o »
axpot—<
axpt st
axp2 ———d

axp3 p—————t

axp4 p——d

axp5 o

axp w——«¢

axp7 44— o

axp8 p————q
axp10 F—w———a
axp11 p—a—dt
axpfea W——
axpfeb ——————a

manchester-2 ¥ %-——4

manchester-3+—#———

manchester-8 §—-®#-————4
sahara g #—————4

4
manchester-5 ¥—%———«¢
manchester-§ ¥—#——< .
manchester-7 #—%—

manches!
manches|
manches!
& mancl
-+ manchesf
asbury-park #—<
i

(a) | (b

Figure 6: Minimum, maximum, and mean load: (a) August, 1997 traces, (b) March, 1998 traces.

other machines. Indeed, the standard deviation, which shows how much load varies in absolute
terms, grows with increasing mean load (Figure 3 shows CC=0.53 for the 1997 traces and CC=0.72
for the 1998 traces.) However, in relative terms, variance shrinks with increasing mean load. This
can be seen in Figure 5, which plots the coefficient of variation (the standard deviation divided by
the mean, abbreviated as the COV) and the mean load for each of the load traces. Here we can
see that desktop machines, with their smaller mean loads, have large COV's compared to the other
classes of machines. The CC between mean load and the COV of load is -0.49 for the 1997 traces
and -0.64 for the 1998 traces. It is clear that as load increases, it varies less in relative terms and
more in absolute terms.

This difference between absolute and relative behavior also holds true for the maximum load.
Figure 6 shows the minimum, ’maximum, and mean load for each of the traces. The minimum
load is, not surprisingly, zero in almost every case. The maximum load is positively correlated
with the mean load (CC=0.60 for the 1997 traces and CC=0.43 for the 1998 traces in Figure 3.)
Figure 7 plots the ratio max/mean and the mean load for each of the traces. It is clear that this
relative measure is inversely related to mean load, and Figure 3 shows that the CC is -0.36 for the
1997 traces and -0.48 for the 1998 traces. It is also important to notice that while the differences
in maximum load between the hosts are rather small (Figure 6), the differences in the max/mean
ratio can be quite large (Figure 7.) Desktops are more surprising machines in relative terms.

With respect to the mapping problem, the implication of the differences between relative and
absolute measures of variability is that lightly loaded (low mean load) hosts are not always prefer-
able over heavily loaded hosts. For example, if the performance metric is itself a relative one (that
the execution time not vary much relative to the mean execution time, say), then a more heavily
loaded host may be preferable.

Distributions:

We next treated each trace as a realization of an independent, identically distributed (IID) stochastic
process. Such a process is completely described by its probability distribution function (pdf),
which does not change over time. Since we have a vast number of data points for each trace,
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histograms closely approximate this underlying pdf. We examined the histograms of each of our
load traces and fitted normal and exponential distributions to them. To illustrate the following
discussion, Figure 8 shows the histograms of load measurements on (a) axp0 and (b) axp7 on
August 19, 1997 (86400 samples each.) AxpO has a high mean load, while axp7 is much more
lightly loaded.

Some of the traces, especially those with high mean loads, have multi-modal histograms. Fig-
ure 8(a) is an example of such a multi-modal distribution while Figure 8(b) shows a unimodal
distribution. Typically, the modes are integer multiples of 1.0 (and occasionally 0.5.) One explana-
tion for this behavior is that jobs on these machines are for the most part compute bound and thus
the ready queue length corresponds to the number of jobs. This seems plausible for the cluster ma-
chines, which run scientific workloads for the most part. However, such multi-modal distributions
were also noticed on the some of the other machines.

The rough appearance of the histograms (consider Figure 8(b)) is due to the fact that the under-
lying quantity being measured (ready queue length) is discrete. Load typically takes on 600-3000
unique values in these traces. Shannon’s entropy measure [25] indicates that the load traces can be
encoded in 1.4 to 8.5 bits per value, depending on the trace. These observations and the histograms
suggest that load spends most of its time in one of a small number of levels.

The histograms share very few common characteristics and did not conform well to the analytic
distributions we fit to them. Quantile-quantile plots are a powerful way to assess how a distribution
fits data (cf. [14], pp. 196-200.) The quantiles (the o quantile of a pdf (or histogram) is the value z
at which 100a % of the probability (or data) falls to the left of z) of the data set are plotted against
the quantiles of the hypothetical analytic distribution. Regardless of the choice of parameters, the
plot will be linear if the data fits the distribution.

We fitted normal and exponential distributions to each of the load traces. The fits are atrocious
for the multimodal traces, and we do not discuss them here. For the unimodal traces, the fits are
slightly better. Figure 9 shows quantile-quantile plots for (a) normal and (b) exponential distri-
butions fitted to the unimodal axp7 load trace of Figure 8(b). Neither the normal or exponential
distribution correctly captures the tails of the load traces. This can be seen in the figure. The
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Figure 10: Time series analysis of axp7 load trace collected on August 19, 1997: (a) Load trace,
(b) Autocorrelation function to lag 600 (10 minutes), (c) Partial autocorrelation function to lag 600
(10 minutes), (d) Periodogram.

quantiles of the data grow faster than those of the normal distribution toward the right sides of
Figure 9(a). This indicates that the data has a longer or heavier tail than the normal distribution.
Conversely, the quantiles of the data grow more slowly than those of the exponential distribution,
as can be seen in Figures 9(b). This indicates that the data has a shorter tail than the exponential
distribution. Notice that the exponential distribution goes as e~* while the normal distribution goes
as e,

There are two implications of these complex distributions. First, simulation studies and analytic
results predicated on simple, analytic distributions may produce erroneous results. Clearly, trace-
driven simulation studies are to be preferred. The second implication is that prediction algorithms
should not only reduce the overall variance of the load signal, but also produce errors that are better
fit an analytic distribution. One reason for this is to make confidence intervals easier to compute.
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Time series analysis:

We examined the autocorrelation function, partial autocorrelation function, and periodogram of
each of the load traces. These time series analysis tools show that past load values have a strong
influence on future load values. For illustration, Figure 10 shows (a) the axp7 load trace collected
on August 19, 1997, (b) its autocorrelation function to a lag of 600, (c) its partial autocorrelation
function to a lag of 600, and (d) its periodogram. The analysis of this trace is representative of our
results.

The autocorrelation function, which ranges from -1 to 1, shows how well a load value at time
t is linearly correlated with its corresponding load value at time ¢ + A — in effect, how well the
value at time ¢ linearly predicts the value at time ¢ + A. Autocorrelation is a function of A, and in
Figure 10(b) we show the results for 0 < A < 600. Notice that even at A = 600 seconds, values
are still strongly correlated. This very strong, long range correlation is common to each of the load
traces.

The partial autocorrelation function shows how well purely autoregressive linear models cap-
ture the correlation structure of a sequence [4], pp. 64-69. The square of the value of the function
at a lag k indicates the benefit of advancing from a k& — 1-th order model to a k-th order model.
Intuitively, if a k-th order model were sufficient, then the partial autocorrelation function would be
zero beyond a lag of k and the autocorrelation function would be infinite. In a dual manner, if a
k-th order purely moving average model were sufficient, then the autocorrelation function would
be zero beyond a lag of k and the partial autocorrelation function would be infinite. As we can
see from Figure 10(b) and (c), both functions have extremely large extents. This suggests that
mixed models, which combine autoregressive and moving average components are appropriate for
modelling host load.

The periodogram of a load trace is the magnitude of the Fourier transform of the load data,
which we plot on a log scale (Figure 10(d).) The periodogram shows the contribution of different
frequencies (horizontal axis) to the signal. What is clear in the figure, and is true of all of the load
traces, is that there are significant contributions from all frequencies — the signal looks much like
noise. We believe the two noticeable peaks to be artifacts of the kernel sample rate — the kernel
is not sampling the length of the ready queue frequently enough to avoid aliasing. Only a few of
the other traces exhibit the smaller peaks, but they all share the broad noise-like appearance of this
trace.

There are several implications of this time series analysis. First, the existence of such strong
autocorrelation implies that load prediction based on past load values is feasible. It also suggests
that simulation models and analytical work that eschews this very clear dependence may be in
error. Finally, the almost noise-like periodograms suggest that quite complex, possibly nonlinear
models will be necessary to produce or predict load.

4 Self-similarity

The key observation of this section is that each of the load traces exhibits a high degree of self-
similarity. This is significant for two reasons. First, it means that load varies significantly across
all time-scales — it is not the case that increasing smoothing of the load quickly tames its variance.
A job will have a great deal of variance in its running time regardless of how long it is. Second, it
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suggests that load is difficult to model and predict well. In particular, self-similarity is indicative of
long memory, possibly non-stationary stochastic processes such as fractional ARIMA models [12,
10, 3], and fitting such models to data and evaluating them can be quite expensive.

Figure 11 visually demonstrates the self similarity of the axp7 load trace. The top left graph in
the figure plots the load on this machine versus time for 10 days. Each subsequent graph “zooms
in” on the highlighted central 25% of the previous graph, until we reach the bottom right graph,
which shows the central 60 seconds of the trace. The plots are scaled to make the behavior on each
time scale obvious. In particular, over longer time scales, wider scales are necessary. Intuitively, a
self-similar signal is one that looks similar on different time scales given this rescaling. Although
the behavior on the different graphs is not identical, we can clearly see that there is significant
variation on all time scales.

An important point is that as we smooth the signal (as we do visually as we “zoom out” toward
the top of the page in Figure 11), the load signal strongly resists becoming uniform. This suggests
that low frequency components are significant in the overall mix of the signal, or, equivalently,
that there is significant long range dependence. It is this property of self-similar signals that most
strongly differentiates them and causes significant modeling difficulty.

Self-similarity is more than intuition — it is a well defined mathematical statement about the
relationship of the autocorrelation functions of increasingly smoothed versions of certain kinds of
long-memory stochastic processes. These stochastic processes model the sort of the mechanisms
that give rise to self-similar signals. We shall avoid a mathematical treatment here, but interested
readers may want to consult [19] or [20] for a treatment in the context of networking or [2] for
its connection to fractal geometry, or [3] for a treatment from a linear time series point of view.
Interestingly, self-similarity has revolutionized network traffic modelling in the 1990s [9, 19, 20,
28].

The degree and nature of the self-similarity of a sequence is summarized by the Hurst param-
eter, H [13]. Intuitively, H describes the relative contribution of low and high frequency com-
ponents to the signal. Consider Figure 12(a), which plots the periodogram (the magnitude of the
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August, 1997 traces, (b) March, 1998 traces.

Fourier transform) of the axp7 load trace of August 19, 1997 on a log-log scale. In this transformed-
form, we can describe the trend with a line of slope — (meaning that the periodogram decays hy-

perbolically with frequency w as w™". The Hurst parameter H is then defined as H = (1 + §)/2.

As we can see in Figure 12(a), H = 0.5 corresponds to a line of zero slope. This is the uncorrelated

noise case, where all frequencies make a roughly equal contribution. As H increases beyond 0.5,

we see that low frequencies make more of a contribution. Similarly, as A decreases below 0.5,

low frequencies make less of a contribution. H > 0.5 indicates self-similarity with positive near

neighbor correlation, while H < 0.5 indicates self-similarity with negative near neighbor correla-

tion. Figure 12(a) shows that the axp7 trace is indeed self-similar with H = 0.875. This method

of determining the Hurst parameter is known as power spectral analysis.

Figure 12(b) illustrates another way to think about the Hurst parameter /. To create the figure,
we binned the load trace with increasingly larger, non-overlapping bins and then plotted the relative
dispersion (the standard deviation normalized by the mean) of the binned series versus the size of
the bins. For example, at a bin size of 8 we averaged the first 8 samples of the original series to
form the first sample of the binned series, the next 8 to form the second sample, and so on. The
figure shows that the relative dispersion of this new 8-binned series is slightly less than one. If
the original load trace is self-similar, the relative dispersion should decline hyperbolically with
increasing bin size. On a log-log scale such we use in the figure this relationship would appear to
be linear with a slope of H — 1. We see that this is indeed the case for the axp7 trace. Notice that
this method for estimating H, which is called dispersional analysis, gives a slightly different
(0.95) than power spectral analysis. What is important is that in both figures we see a hyperbolic
relationship, and that both estimates for H are much larger than 0.5.

We examined each of the load traces for self-similarity and estimated each one’s Hurst param-
eter. There are many different estimators for the Hurst parameter [27], but there is no consensus
on how to best estimate the Hurst parameter of a measured series. The most common technique is
to use several Hurst parameter estimators and try to find agreement among them. The four Hurst
parameter estimators we used were R/S analysis, the variance-time method, dispersional analy-

15




Production Cluster Research Deskiops 1.2 Production Cluster Research Desktops
L]

12 Cluster . Cluster
n
[ ] LI n
= ] - s » nen®y
" ermecaragtametuagh g Tay, o n o w7, Bt AN e T LR FYTE O
bl 4 A L 4 ] 51 A L 2 -
2 s (*Ce0T R Mo o m e g, 2 |steecetesssstlhe 2 .3
2 . o 2 B % T ¢ *%e oot jhe 2830, %" 9
go_s,eh-e,.o%:g,eo sol'es by 2, 800%, Losl, .. 3 ML IO L2 TN
@ '3 & " . P
= % % @ o P A = ®
%0'6& e - %08 & # o
§ —&- R/S Analysls 14 é —— R/S Analysis b
£ 041 Varlance-Time qz’ £ 047 2
= el = % Variance-Time 4
@ Method 3 o 2
u @ u Dispersional @
Dispersionat o b 2
02 —— anEeee :é' 0.2 . $
X Power Spectral S o . Powar Spectral £
- 5}
Analysis (] Analysts o
o 70— t-—rr—t—tr-—r———r— O+ T~ r———rr———r————r
ov—vamwr\mmgmn“—qﬂcpvu‘n,ovTalcmggmmgg—‘-—‘ag{'amggwo EFNNEIA’)(DI\”Q:!B.OFNC?YI‘?(D:“;USg{f'ﬁ:fa(ﬂﬁ.gmo
EEEEEE R PP R R S HEEHEE IS SRR EEE s R,
”mm%&%%ﬁ,’%%%gﬁf“g 8v2<e £5 S EESo0008888 EE%ESE—S £5
66666666 & & SG66666EE 83
cCEccccCcce ccceccccc 23
© @U@ M oE MM OoEoea <
EEEEEEEE EEEEEEEE
Host Host
(@ (b)

Figure 14: Hurst parameter point estimates: (a) August, 1997 traces, (b) March, 1998 traces.

sis, and power spectral analysis. A description of these estimators as well as several others may be
found in [2]. The advantage of these estimators is that they make no assumptions about the stochas-
tic process that generated the sequence. However, they also cannot provide confidence intervals
for their estimates. Estimators such as the Whittle estimator [3] can provide confidence intervals,
but a stochastic process model must be assumed over which an H can be found that maximizes its
likelihood.

We implemented the estimators using Matlab and validated each one by examining degenerate
series with known H and series with specific H generated using the random midpoint displacement
method. The dispersional analysis method was found to be rather weak for A values less than about
0.8 and the power spectral analysis method gave the most consistent results.

Figure 13 presents our estimates of the Hurst parameters of each of load traces. In the graph,
each central point is the mean of the four estimates, while the outlying points are at +/- one standard
deviation. Figure 14 shows the four actual point estimates for each trace. Notice that for small H
values, the standard deviation is high due to the inaccuracy of dispersional analysis. The important
point is that the mean Hurst estimates are all significantly above the H = 0.5 line and their +/- one
standard deviation points are also above the line.

The traces exhibit self-similarity Hurst parameters ranging from 0.73 to 0.99, with a strong
bias toward the top of that range. An examination of the correlation coefficients (CCs) in Figure 3
shows some surprising results. For the August, 1997 traces, the Hurst parameter is positively cor-
related with mean load (CC=0.45) and the standard deviation of load (CC=0.58), but is negatively
correlated with the max/mean load ratio (CC=-0.49). On the other hand, for the March, 1998
traces, the Hurst parameter is negatively correlated with mean load (CC=-0.30) and the standard
deviation of load (CC=-0.41), but is positively correlated with the max/mean ratio (CC=0.36). Fur-
thermore, in the March, 1998 traces, we find the Hurst parameter is strongly positively correlated
with the epoch statistics, which is not the case at all for the August, 1997 traces. It is not clear
what the cause for this difference between the traces is.

As we discussed above, self-similarity has implications for load modeling and for load smooth-
ing. The long memory stochastic process models that can capture self-similarity tend to be expen-
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sive to fit to data and evaluate. Smoothing the load (by mapping large units of computations instead
of small units, for example) may be misguided since variance may not decline with increasing
smoothing intervals as quickly as quickly as expected. Consider smoothing load by averaging over
an interval of length m. Without long range dependence (H = 0.5), variance would decay with
m as m~1°, while with long range dependence, as m*7~2 or m 5% and m %2 for the range of
Hurst parameters we measured.

5 Epochal behavior

The key observation in this section is that while load changes in complex ways, the manner in
which it changes remains relatively constant for relatively long periods of time. We refer to a
period of time in which this stability holds true as an epoch. For example, the load signal could be
a 0.25 Hz Sin wave for a minute and a 0.125 Hz sawtooth wave the next minute — each minute
is an epoch. That these epochs exist and are long is significant because it suggests that modeling
load can be simplified by modeling epochs separately from modeling the behavior within an epoch.
Similarly, it suggests a two stage prediction process.

The spectrogram representation of a load trace immediately highlights the epochal behavior we
discuss in this section. A spectrogram combines the frequency domain and time domain represen-
tations of a time series. It shows how the frequency domain changes locally (for a small segment
of the signal) over time. For our purposes, this local frequency domain information is the “manner
in which [the load] changes” to which we referred earlier. To form a spectrogram, we slide a win-
dow of length w over the series, and at each offset £, we Fourier-transform the w elements in the
window to give us w complex Fourier coefficients. Since our load series is real-valued, only the
first w/2 of these coefficients are needed. We form a plot where the x coordinate is the offset &,
the y coordinate is the coefficient number, 1,2, ..., w/2 and the z coordinate is the magnitude of
the coefficient. To simplify presentation, we collapse to two dimensions by mapping the logarithm
of the z coordinate (the magnitude of the coefficient) to color. The spectrogram is basically a mid-
point in the tradeoff between purely time-domain or frequency-domain representations. Along the
x axis we see the effects of time and along the y axis we see the effects of frequency.

Figure 15 shows a representative case, a 24 hour trace from the PSC host axp7, taken on August
19, 1997. The top graph shows the time domain representation, while the bottom graph shows the
corresponding spectrogram representation. What is important to note (and which occurs in all
the spectrograms of all the traces) are the relatively wide vertical bands. These indicate that the
frequency domain of the underlying signal stays relatively stable for long periods of time. We refer
to the width of a band as the duration of that frequency epoch.

That these epochs exist can be explained by programs executing different phases, programs
being started and shut down, and the like. The frequency content within an epoch contains energy
at higher frequencies because of events that happen on smaller time-frames, such as user input,
device driver execution, and dacmon execution.

We can algorithmically find the edges of these epochs by computing the difference in adja-
cent spectra in the spectrogram and then looking for those offsets where the differences exceed
a threshold. Specifically, we compute the sum of mean squared errors for each pair of adjacent
spectra. The elements of this error vector are compared to an epsilon (5% here) times the mean of
the vector. Where this threshold is exceeded, a new epoch is considered to begin. Having found
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1998 traces. :

the epochs, we can examine their statistics. Figure 16 shows the mean epoch length and the +/- one
standard deviation levels for each of the load traces. The mean epoch length ranges from about 150
seconds to over 450 seconds, depending on which trace. The standard deviations are also relatively
high (80 seconds to over 600 seconds.) It is the Production Cluster class which is clearly different
when it comes to epoch length. The machines in this class tend to have much higher means and
standard deviations than the other machines. One explanation might be that most of the machines
run batch-scheduled scientific jobs which may well have longer computation phases and running
times. However, two of the interactive machines also exhibit high means and standard deviations.
Interestingly, there is no correlation of the mean epoch length and standard deviation to the mean
load for either set of traces (Figure 3.) However, for the March, 1998 traces, we find correlations
between the epoch length statistics and the Hurst parameter that are particularly strong. It is not
clear why this difference exists between the traces. -

The standard deviations of epoch length in Figure 16 give us an absolute measure of the vari-
ance of epoch length. Figure 17 shows the coefficient of variance (COV) of epoch length and mean
epoch length for each trace. The COV is our relative measure of epoch length variance. Unlike
with load (Section 3), these absolute and relative measures of epoch length variance are both posi-
tively correlated with the mean epoch length. In addition, the correlation is especially strong (the
CCs are at least 0.88.) As epoch length increases, it varies more in both absolute and relative terms.
The statistical properties of epoch lengths are independent of the statistical properties of load.

The implication of long epoch lengths is that the problem of predicting load may be able to be
decomposed into a segmentation problem (finding the epochs) and a sequence of smaller prediction
subproblems (predicting load within each epoch.)

Strictly speaking, epochal behavior means that load is not stationary. However, it is also not
free to wander at will — clearly load cannot rise to infinite levels or fall below zero. This is
compatible with the “borderline stationarity” implied by self-similarity.
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Figure 17: COV of epoch length and mean epoch length: (a) August, 1997 traces, (b) March, 1998
traces.

Lack of seasonality:

It is important to note that the epochal behavior of the load traces is not the same thing as season-
ality in the time series analysis sense [5, 4]. Seasonality means that there are dominant (or at least
visible) underlying periodic signals on top of which are layered other signals. Itis not unreasonable
to expect seasonality given that other studies [21] have found that availability of compute resources
to change regularly over the hours of the working day and the days of the working week. However,
examination of the power spectrums and autocorrelations of the load traces suggests that load does
not exhibit seasonality. We feel this does not contradict the earlier results — the fluctuation of
resources simply is not sufficiently periodic to qualify as seasonality in the strict time series sense.

6 Conclusions and future work

\
We collected long, fine grain load measurements on a wide variety of machines at two different
‘times of the year. The results of an extensive statistical analysis of these traces and their implica-
tions are the following: '

1. The traces exhibit low means but very high standard deviations and maximums. This implies
that these machines have plenty of cycles to spare to execute jobs, but the execution time of
these jobs will vary drastically. '

2. Absolute measures of variation are positively correlated with the mean while relative mea-
sures are negatively correlated. This suggests that it may not be unreasonable to map tasks
to heavily loaded machines under some performance metrics.

3. The traces have complex, rough, and often multimodal distributions that are not well fitted by
analytic distributions such as the normal or exponential distributions, which are particularly
inept at capturing the tail of the distribution. This implies that modeling and simulation that
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assumes convenient analytical load distributions may be flawed. Trace-driven simulation
may be preferable. ‘

4. Load is strongly correlated over time, but has a broad, almost noise-like frequency spectrum.
This implies that history-based load prediction schemes are feasible, but that linear methods
may have difficulty. Realistic load models should capture this dependence, or trace-driven
simulation should be used.

5. The traces are self-similar with relatively high Hurst parameters. This means that load
smoothing will decrease variance much more slowly than expected. It may be preferable
to migrate tasks in the face of adverse load conditions instead of waiting for the adversity to
be ameliorated over the long term. Self-similarity also suggests certain modeling approaches
such as fractional ARIMA models [12, 10, 3] and non-linear models which can capture the

self-similarity property.

6. The traces display epochal behavior in that the local frequency content of the load signal
remains quite stable for long periods of time and changes abruptly at the boundaries of such
epochs. This suggests that the problem of predicting load may be able to be decomposed
into a sequence of smaller subproblems.

Given these properties, we decided to study the performance of Box-Jenkins linear time series
models [4] and fractional ARFIMA models [10, 12, 3] for short range prediction of host load.
The more complex models do indeed tend to fif the data of a load trace better than simple models.
For example, fractional ARFIMA models had as much as 40% lower mean squared error in some
cases. Surprisingly, however, we found that simple autoregressive models performed sufficiently
well for short range prediction [7]. While there were statistically significant differences between
the models we studied, they were not sufficiently large to warrant the use of more complex models.
Our recommendation is to use autoregressive models of order 16 or higher for prediction horizons
of up to 30 seconds.
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